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Graphite Outline

• Functions and Requirements
§ Normal and off-normal component functions
§ Key safety requirements of core components

• Graphite Manufacture
§ Unique material properties of graphite
§ Ideal unirradiated material properties – it’s not metal

• Environmental effects on nuclear graphite 
§ Effects of oxidation

• It doesn’t burn!
§ Effects of irradiation of graphite

• No Wigner (stored) energy if operated above 300°C
• Physical, thermal, and mechanical properties
• Turnaround and creep significance explained

• ASME Code for Graphite Core Components
§ New ASME code: probabilistic (ceramics) vs. deterministic (metals)
§ How environmental effects are accounted for in design requirements

• Operating considerations (prismatic vs. pebble vs. molten salt)
§ Differences between different graphite core designs 2



Critical Safety Requirements
• Maintain core geometry and structural integrity

§ Maintain fuel configuration during all operations (normal and off-normal)
§ Maintain undisturbed access for the insertion of reactivity control material
§ Maintain proper core coolant configuration 

• No blockage of coolant pathway 
• No gaps between graphite components

• Protection of fuel 
§ Compacts within the prismatic fuel elements
§ Pebbles within the core center

• Passively remove core heat during off-normal events
§ Rapidly absorb large thermal transients
§ Primarily by radial conduction from the fuel to the core barrel 

• During off-normal events when forced cooling is not available

• How does it do this?
§ Graphite does NOT melt or burn 
§ Graphite DOES have high thermal conductivity and thermal stability
§ Relatively strong in compression, weak in tension.
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Graphite Manufacture
• All graphite grades are proprietary. Only 

limited/general fabrication data is known
• Unique manufacturing processes for graphite 

must be understood to appreciate graphite 
behavior
§ Graphite is a porous material (15-20%) - By 

design! 
§ Porosity provides thermal and irradiation 

stability

• Graphite is manufactured from calcined coke 
and a pitch binder. 
§ Multiple pitch impregnations to increase density

• Green forming technique influences the final 
microstructure
§ Desire isotropic (or near isotropic) material 

response

• Properties and performance of graphite are 
significantly influenced by both raw materials 
and processing
§ Nuclear graphite undergoes further purification 

steps
4



Graphite Material Properties of Interest

From ASTM D7219 : Standard Specification for Isotropic and 
Near-isotropic Nuclear Graphites
• Density 

§ Higher = Stronger
§ Lower = Better irradiation performance

• Conductivity
§ Nearly a 70% drop almost immediately after reactor 

startup

Property Nominal Range Performance Attributes

Density 1.7 - 1.9 g/cm3 Neutron efficiency, Structural integrity, Thermal efficiency

Thermal Conductivity (at Room 
Temperature)

> 90 W/m/K
Heat transport

Purity (Total Ash Content) < 300 ppm
Reduced component activity levels during replacement and/or disposal
Reduced graphite oxidation under normal and accident conditions.

Tensile Strength > 15 MPa Structural integrity

Compressive Strength > 45 MPa Structural integrity

Flexural Strength > 20 MPa Structural integrity

CTE (20°C to 500°C) 3.5 to 5.5 x 10-6 K-1

High value is indication of isotropy = dimensional stability under 
irradiation
Lower value potentially beneficial in terms of thermal stress

CTE Isotropy Ratio < 1.10
Irradiation dimensional stability
Structural integrity

Dynamic Elastic Modulus 8 – 15 GPa
Structural integrity
Irradiation creep

Dimensional Changes with 
Irradiation 

Minimal shrinkage 
Minimal differences in with-grain and 
against-grain directions

Structural integrity (lower internal stresses)

• CTE (Coefficient of Thermal Expansion)
§ Indicates isotropy and needed for gas gap analysis

• Purity
§ Requires additional heat treatment

• Dimensional changes
§ Affects structural integrity
§ If internal stress exceeds inherent strength of 

graphite = cracks
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Graphite “Burning” and dust “Explosions”

• Graphite can not burn – just physically can not sustain self oxidation
§ Fire needs           Heat, fuel, and oxygen
§ Fuel (carbon) is restricted to only the edges. Oxygen is restricted by the crystallography.
§ Self-sustained oxidation (better definition than simple burning) can not be sustained.

• Graphite dust can not explode
§ It does rapidly react but it self-suppresses. Similar mechanisms for “burning”
§ Initial flare up of surface layer on dust particles – but then nothing.

• No chain reaction 6



Graphite “Burning” and dust “Explosions”

Graphite Dust

Graphite

Corn (Maize) Dust

Corn

Acheson

White hot graphite from furnace
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Graphite Oxidation and “Burning”
• Graphite can and does oxidize – high temperatures
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Increasing grain size

• Needs continuous oxygen and temperatures above 
200°C – 300°C
§ Temperatures > 400°C needed for more rapid acute 

oxidation (accidents)
§ Temperatures < 400°C can still oxidize but at very slow 

rates (chronic oxidation)
• Oxidation still restricted to edges of crystallites with 

porosity dictating oxygen transport into component

• Oxidation rates of different grades 
can be compared using ASTM 
D7542 standard, “Air Oxidation of 
Manufactured Carbon and 
Graphite in Kinetic Regime”
§ Grain size dependent
§ Oxidation of small grain grade >> 

than large grain size



Irradiation Effects on Graphite Properties

• Irradiation induced changes must be considered in design
• Significant changes occur during normal operation in:

§ Component dimensions
• Components actually shrink …
• Until Turnaround when they begin to expand until failure

§ Density
• Components become more dense …
• After Turnaround dose they decrease in density

§ Strength and modulus
• Graphite gets stronger with irradiation …
• Until Turnaround dose is achieved. It then decreases

§ Thermal conductivity
• Decreases almost immediately to ~30% of unirradiated values

§ Coefficient of thermal expansion
• Initially increases but then reduces after Turnaround until saturation

• Significant changes do not typically occur in the following properties:
§ Oxidation rate, neutron moderation, specific heat capacity, emissivity

• No Wigner energy release if components irradiated above 300°C.
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Irradiation-Induced Dimensional Changes

• Under neutron irradiation graphite components shrink (densify) – stop at 
Turnaround – then begin to expand (crack formation)
§ Change is dose dependent: Higher doses = larger change
§ Rate of change is highly temperature dependent
§ Rate and amount of change is grade specific

• Results in tremendous internal stresses formed within graphite
§ Crack formation and component failure – usually after Turnaround
§ Isotropic response is desired to assist in prediction of stresses and dimensional changes
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Irradiation-Induced Strength/Modulus Changes

• Changes in strength and modulus 
somewhat parallel dimensional 
changes

• Strength/modulus initially increase
§ Maximum value is reached at 

approximately the Turnaround dose

• After Turnaround pores start to form 
in microstructure
§ As porosity forms, strength and modulus 

fall at increasing rate
• As with dimensional changes, strong 

dependence on irradiation temperature
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Irradiation-Induced Thermal Conductivity Changes

• Initial steep drop in conductivity followed by a saturation level
§ Point defects interrupt thermal diffusivity/conductance
§ Efficiency of recombination rate of point defects is dependent upon irradiation 

temperature = saturation
§ Further degradation of conductivity due to larger microstructure defects 

• Pore generation after turnaround

• At high operating temperatures irradiated and non-irradiated thermal diffusivity 
differences are small 12
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Irradiation-Induced CTE Changes

• Overall, graphite CTE is low 
compared to other structural 
materials, e.g., metals
§ Implies excellent shock 

resistance
• Along with dimensional 

changes, must be accounted 
for in the design

• Initial increase with dose as 
manufacturing-related 
microcracks are closed
§ Limited dependence on 

Turnaround
• Subsequent reduction of 

CTE at increased dose rate
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Irradiation 
Creep

(Residual stress 
remover)

Irradiation 
Dimensional 

Change

Dose, dpa

Irradiation Creep – Life Limiting Mechanism

• Reduces internal stresses 
resulting from dimensional 
changes

• Creep strain rate generally 
increases with temperature

• The net effect is positive in that 
stresses associated with 
dimensional changes and 
differential thermal expansion 
under irradiation are reduced

• As the total fluence (dose) is 
increased, this effect becomes 
increasingly important in 
attaining acceptable design 
lifetimes.
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• ASME Code for Graphite Core approved by ASME 
BNCS in early-2010
§ Developed by Section III Subgroup on Graphite Core 

Components
§ First published in 2012 under Section III, Division 5 

(High-Temperature Reactors)
• Key features:

§ Applies to fuel, reflector and shielding blocks, plus 
interconnecting dowels and keys; 

• Excludes fuel compacts and pebbles
§ Rules apply to both individual components and 

assemblies
§ Applies probabilistic design methods
§ Design must account for statistical variations in graphite 

properties within billets and for different production runs
§ Design must account for irradiation effects on graphite 

properties
§ Allowance of cracks in graphite components, provided 

that safety functions are retained

15

ASME Code for Graphite Core Components



Three methods are provided for assessing structural 
integrity
1. Deterministic
§ Simplified conservative method based on ultimate strength 

derived from Weibull statistics

2. Full Analysis Method
§ Detailed structural analysis taking into account

loads, temperatures and irradiation history
§ Weibull statistics used to predict probability 

of failure
§ Maximum allowable probability of failure defined

for three Structural Reliability Classes (SRCs), which relate 
to safety function

3. Qualification by Testing
§ Full-scale testing to demonstrate that failure probabilities 

meet criteria of full-analysis method

All methods must consider changes from irradiation and 
oxidation

Structural
Reliability

Class

Maximum
Probability
of Failure

SRC-1 1.00E-04
SRC-2 1.00E-02
SRC-3 1.00E-01

16
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• New grades (third generation) are consistent 
and ready for codification
§ Lack of quantitative data on graphite behavior at 

higher temperature and dose applications
§ Test data is needed to define how precursor 

material changes, fabrication, and 
microstructure changes will affect performance

• Probablistic verses deterministic design 
approach
§ Deterministic is too limiting for a brittle material
§ A distribution of possible strengths in a material 

is needed for quasi-brittle materials (i.e., flaw 
size for graphite)From Dr. Mark Mitchell – PBMR Inc.

ASME Code for Graphite Core Components
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• Some amount of failure (i.e., a crack) is certain – graphite is 
porous
§ The core needs to be designed to accept some amount of 

failure
§ Probability of failure based upon overlap of applied stresses and 

graphite strength
• Irradiation and oxidation effects must be addressed



When do you replace the graphite?

∆V
/V

DoseMost 
Conservative 
Dose Level

More Risk but 
some Rx do 
operate here

Highest Risk

Operational Considerations – Operational Life
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Operational Lifetime Considerations
Pebble Bed 

• Highest component lifetime dose
§ What is expected lifetime dose?
§ Turnaround dose? After Turnaround?

• Continuous operation
§ Inspection of components is problematic
§ Component replacement is difficult

• Components in high-fluence regions 
should be designed for replacement
§ Will require shutdown and de-fueling of 

pebbles from core
• Large grain grades are possible

§ Higher Turnaround dose than fine grain
§ Lower oxidation rates than fine grain

• Irradiated test data validating models 
will be required
§ Currently only limited irradiation data for 

newer nuclear grades
§ Design life to be appropriately adjusted 

as data become available.
• Dust?

19

Prismatic
• Lower component lifetime dose

§ Still need expected lifetime dose

• Periodic shutdown
§ Much easier to inspect components
§ Components in high-fluence regions can be 

replaced or shuffled

• Finer grain grades required 
§ Webbing between fuel/coolant channels 

requires smaller grain size
§ Slightly lower Turnaround dose
§ Higher oxidation rate

• Still requires irradiated test data to 
validate operational models
§ Currently only limited irradiation data for 

newer nuclear grades
§ Design life to be appropriately adjusted 

as data become available



Conclusions
• All graphite nuclear grades are proprietary

§ Graphite is porous – by design
§ Compressive applications only (σc >> σt)

• Irradiation behavior is required for design
§ Dimensional change and creep is life limiting mechanism
§ Strength/internal stress is dose dependent

• Degradation/Oxidation of graphite
§ Graphite does not burn (but it does oxidize at high temperatures)
§ Oxidation limited to 10% mass loss. Then replace the component

• In-service Inspection
§ Easy for Prismatic designs. More difficult for Pebble designs

• Visual and physical inspection of accessible areas during refueling or maintenance
• In-situ Measurements (primarily interest to pebble reactors)

• ASME Code
§ Probabilistic design calculations

• Some amount of failure (i.e., a crack) is nearly certain over time
• Operational considerations – Pebble and prismatic

§ What is the lifetime dose of component?
• Is this after Turnaround dose?

§ Can core be inspected? How are components to be replaced if required?
§ Oxidation rates of graphite (small versus larger grain grade) 20
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Suggested Reading (cont.)
• ASME Code and Licensing
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Source-dependence on graphite properties
• There is no generic “nuclear grade” graphite that can be made by all vendors

§ All nuclear graphite grades are proprietary. How they are made is secret to the 
individual vendor

• Completely different than metals. There is no fabrication information available for any grade.
§ Graphite users must select the grades that match their specific requirements
§ And no, vendors wont give up their recipes. There is no customer base asking for it

• As discussed in fabrication slide the unique graphite manufacturing processes 
dictate the graphite behavior – both unirradiated and irradiated
§ Main fabrication parameters are:

• coke source: petroleum or coal-based coke source
• grain size: coke particles (grains) range in size from 1800 μm to 15 μm
• fabrication method: iso-static molded, vibration molded, or extruded fabrication
• Grain-binder ratio: the amount of carbonaceous binder added to the grain particles

§ Modifying these parameters can dramatically alter the unirradiated material 
properties and irradiation performance

24

Parameter Unirradiated Behavior Irradiated Behavior

Increased Density Increased strength and modulus
Higher fracture strength

A general decrease in Turnaround dose
• Shorter component lifetime

Isostatic fabrication Higher isotropy (than extruded)
Higher cost material

Better, more predictable, irradiation 
performance.

Smaller grain size More uniform, finer microstructure
• Especially when isostatic molded

Higher oxidation rate than larger grained

Super-fine grades may have lower Turnaround 
dose



Minimal effects to graphite from irradiation
• No significant changes occur in:

§ Neutron moderation – Carbon atoms not removed
§ Specific heat capacity – Crystal structure remains intact
§ Oxidation rate - Minimal changes if any due to densification during irradiation.
§ Molten salt interaction – Graphite behavior (unirr. and irr.) similar to gas-cooled

• Physical damage possible from salt intrusion into pores in graphite components
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§ Emissivity:
• Unaffected by irradiation but oxidation 

may leave impurity oxides on outer 
surface.
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• Minimal Wigner energy release if 
components irradiated above 300°C.
§ Annealing of point defects in graphite is 

rapid above 250°C
§ Minimal accumulation of stored energy

• Need high dose & low Ti
§ Low dose/low Ti components have 

reduced risk



Graphite Component Failure
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• What do we mean by structural integrity
§ U.K.’s AGR bricks – Now past Turnaround dose

• Example of graphite component failure.
§ Both axial as well as radial cracking in components

• Lifetime is completely dependent upon graphite 
core now
§ Not fuel design/performance, metallic internals, or 

secondary systems

360°

AGR Core components



Graphite Component Failure
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• CAUTION!
§ U.K. AGR uses CO2 for coolant
§ Radiolytic oxidation exacerbates all strength changes

• Inert gas cooled designs will be more robust
§ Component strength, internal stresses, and POF will 

be much different than CO2 cooled AGRs

360°

AGR Core components
From: J. Reed, Summary of Recent Inspection Data at 
UK Advanced Gas Cooled Reactors with Implications 
for Assessment of Graphite Component Integrity, 
INGSM-17, 4–8 September 2016, IAEA, Vienna, Austria



Component inspection (NDE techniques)
• Visual inspection, Eddy current, Ultrasonic, and X-ray inspection is possible

§ Thick graphite components are difficult to inspect
• Flaw size resolution (i.e., cracks) are difficult to resolve in thick components

§ Visual, Eddy current, and small sample trepanning are current methods used 
• U.K.’s AGR inspection program
• No good technique exists. Destructive analysis (trepanning) yields most information
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Induction Coil

AC Magnetic Field
Eddy Currents

Electrically Conductive Test Piece
Measure Induction Coil Impedance to Detect Defects

• ASTM D8093 Standard Guide for 
Nondestructive Evaluation of Nuclear 
Grade Graphite
§ Guideline on how to use various Non-

Destructive Examination (NDE) 
techniques to graphite core 
components.

Test Sample

Transmit Receive

Ultrasonic method to detect defects

           Detection of flaws (drilled holes) from X-ray method



ASME code methodology for graphite - 1
• Two key points to keep in mind:

1. All nuclear graphite is proprietary – Specific fabrication recipes are unknown
• The properties for each grade are highly dependent on the recipe and are optimized 

(altered) to suit each users requirements
2. Graphite is brittle (quasi-brittle)

• Metals are ductile giving them the ability to fail in a predictable manner
• Graphite fails much like ceramic – probability of failure (POF) due to flaw size distributions
• Weibull analysis historically used to predict the probability of failure and characteristic 

strength of brittle and flaw dependent materials

• Consequently, there are no “standard” specifications such as metals have
§ ASTM D7219 specifies impurity levels only. Other properties are desired ranges
§ It’s like specifying “Stainless steel” for a component (not 304, 316, or 316L)

• The selected grade is then fabricated to the specific requirements of component
• However, not much variation over all the grades. Not like metals

• KIc ~ 0.5 – 1.5 Pa∙√m, σt = 15-30 MPa, 4.5 – 5.5 x 10-6, etc.

• Thus, graphite code is a “process” vs just picking a preapproved material
§ The reactor applicant must demonstrate the graphite grade selected will consistently

meet the component requirements
• Requires property testing and analysis of the material properties before is durability as a 

nuclear component is analyzed
• Achieved through the “Material Data Sheets” required in Code

• Weibull parameters from strength tests used to predict the probability of failure of graphite
• Data used in both “simple” (deterministic) and “full” (probabilistic) determination
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ASME code methodology for graphite -2
• Fundamental material properties change with irradiation/oxidation

§ Code must assess changes to design of component due to these changes
• Irradiation: changes to density, strength, dimension, CTE, thermal conductivity
• Oxidation: changes in density, strength, CTE, and thermal conductivity

§ Code must also address these changes to in service and inspection
• NDE and ISI are still outstanding issues that need to be addressed for graphite

• Material testing and analysis must be performed to determine changes
§ Property changes and irradiation creep to maximum expected dose levels
§ Oxidation rates, property changes, and strength assessment to maximum expected 

oxidation levels
• Expected degradation during off-normal events with high temperatures and oxygen ingress

• Behavior and performance prediction models based upon irradiation and 
oxidation experimental results
§ Property degradation due to oxidation, irradiation, and dimensional stress buildup.
§ Fracture behavior and structural integrity = Primary 30



Summary of Simplified Graphite Assessment
Simple Assessment: 2 parameter Weibull (Deterministic Analysis)

Perform a stress 
analysis of the 
graphite 
component

Cm = Combined Membrane Stress
Cb = Combined Bending Stress
F = Peak Stress
Rtf = ratio of flexural to tensile strength

Estimate the scale and 
shape of a 2 parameter 
Weibull using a linear fit 
to measured property 
data 

m* and Sc
*

Evaluate the acceptability of 
the design 

- Cm < Sg(P)
- Cm + Cb + F < Rtf * 
Sg(P)

Sg(P) , Rtf

Using m* and Sc
* 

determine the 
Weibull parameters 
corresponding to a 
95% confidence 
interval 

m95% and Sc95%

Using m95% and Sc95%
determine the “design 
allowable stress” as a 
function of POF = 10-4, 
10-3, 10-2 and 5x10-2

from SRCs

Sg(P)

(ref. HHA-3215 pg. 392 and HHA-3216 pg. 393)

(ref. HHA-II-3100 pg. 414)
(ref. eq.6 and eq.7 pg. 417) (ref. HHA-II-3300 pg. 418)

(ref. HHA-3220 pg. 394)

Calculate the 
ratio of 

flexural to 
tensile 

strength

Rtf
(Ref.HHA-II-2000 

pg. 412)



Summary of Full Graphite Assessment
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Full Assessment: 3 parameter Weibull (Probabilistic Analysis)
Define the “Material 
Reliability Curve” by fitting a 
3 parameter Weibull model 
to the measurement data. 

Estimate 3 parameter 
Weibull parameters using 
MLE’s .
(So, m095% and Sc095%)

Calculate the POF of the 
graphite core component 
using the “Material Reliability 
Curve” and stress distribution 
in the component. 

Evaluate the acceptability of 
the design 

POFcomponent < POFallowable

Determine the allowable 
POF from the Structural 
Reliability Class (SRC), and 
Service Level Design 
Loading. 

POFallowable ≤ 10-2 and ≥ 10-4

POFcomponent

(ref. HHA-II-3200 pg. 417) (ref. HHA-3217 pg. 393)

(ref. HHA-3230 thru HHA-3237 pg. 397)



ASME Code modifications (Roadmap)
• Corrosion rate variability within a nuclear grade

§ Oxidation test specimens should require testing specimen be selected at different 
locations within a billet, over multiple billets, and over multiple batches

• This will provide the oxidation rate variability across the entire specific grade
§ Currently the oxidation mass loss for a component is limited to 10 wt%

• After 10 wt% the component is recommended to be replaced
• Code needs to provide guidance on how the oxidation mass loss is applied

• Averaged over entire core? Only in central core region? Or only for select components?

• High temperature mechanical testing isn’t really necessary for graphite
§ As noted mechanical strength and modulus increase with increasing temperature
§ Room temperature results are conservative for graphite
§ No elevated temperature testing standards exist to support this current requirement

• (i.e., no ASTM standards)
§ How is elevated temperature testing of irradiated material to be conducted?

• Testing temperatures at (or above) Tirr will anneal out irradiation effects

• Mechanical testing of irradiated material is unnecessary up to Turnaround
§ As noted mechanical strength and modulus increase with increasing dose – until 

Turnaround dose has been reached
§ Room Temperature/unirradiated mechanical testing is conservative until Turnaround 

dose has been achieved
§ If components will be used to dose levels above Turnaround (i.e., high dose levels) 

extensive testing will be required 33
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